Метки: Корреляция значение слова, корреляция чисел, корреляция бисериальная, корреляция что это в экономике.
Корреля́ция (от лат. correlatio «соотношение, взаимосвязь») или корреляционная зависимость — это статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.[1]
Математической мерой корреляции двух случайных величин служит корреляционное отношение [2] либо коэффициент корреляции (или )[1]. В случае если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической[3].
Впервые в научный оборот термин корреляция ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века.[4]
Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи. Например, рассматривая пожары в конкретном городе, можно выявить весьма высокую корреляцию между ущербом, который нанёс пожар, и количеством пожарных, участвовавших в ликвидации пожара, причём эта корреляция будет положительной. Из этого, однако, не следует вывод «увеличение количества пожарных приводит к увеличению причинённого ущерба», и тем более не будет успешной попытка минимизировать ущерб от пожаров путём ликвидации пожарных бригад.[5] В то же время, отсутствие корреляции между двумя величинами ещё не значит, что между ними нет никакой связи. Например, зависимость может иметь сложный нелинейный характер, который корреляция не выявляет.
Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными. В первом случае предполагается, что мы можем определить только наличие или отсутствие связи, а во втором — также и её направление. Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой. При этом коэффициент корреляции будет отрицательным. Положительная корреляция в таких условиях — это такая связь, при которой увеличение одной переменной связано с увеличением другой переменной. Возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин.
Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или (тау) Кендалла. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими — четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, когда связь между ними линейна (однонаправлена).
Важной характеристикой совместного распределения двух случайных величин является ковариация (или корреляционный момент). Ковариация является совместным центральным моментом второго порядка.[6] Ковариация определяется как математическое ожидание произведения отклонений случайных величин[7]:
где — математическое ожидание (в англоязычной литературе принято обозначение ).
Свойства ковариации:
Так как и — независимые случайные величины, то и их отклонения и также независимы. Пользуясь тем, что математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий сомножителей, а математическое ожидание отклонения равно нулю, имеем
Введём в рассмотрение случайную величину (где — среднеквадратическое отклонение) и найдём её дисперсию . Выполнив выкладки получим:
Любая дисперсия неотрицательна, поэтому
Отсюда
Введя случайную величину , аналогично
Объединив полученные неравенства имеем
Или
Итак,
Для устранения недостатка ковариации был введён линейный коэффициент корреляции (или коэффициент корреляции Пирсона), который разработали Карл Пирсон, Фрэнсис Эджуорт и Рафаэль Уэлдон в 90-х годах XIX века. Коэффициент корреляции рассчитывается по формуле[10][8]:
где , — среднее значение выборок.
Коэффициент корреляции изменяется в пределах от минус единицы до плюс единицы[11].
Разделив обе части двойного неравенства на получим
Линейный коэффициент корреляции связан с коэффициентом регрессии в виде следующей зависимости: где — коэффициент регрессии, — среднеквадратическое отклонение соответствующего факторного признака[12].
Применяется для выявления взаимосвязи между количественными или качественными показателями, если их можно ранжировать. Значения показателя X выставляют в порядке возрастания и присваивают им ранги. Ранжируют значения показателя Y и рассчитывают коэффициент корреляции Кендалла:
,
где .
— суммарное число наблюдений, следующих за текущими наблюдениями с большим значением рангов Y.
— суммарное число наблюдений, следующих за текущими наблюдениями с меньшим значением рангов Y. (равные ранги не учитываются!)
Если исследуемые данные повторяются (имеют одинаковые ранги), то в расчетах используется скорректированный коэффициент корреляции Кендалла:
— число связанных рангов в ряду X и Y соответственно.
Степень зависимости двух случайных величин (признаков) X и Y может характеризоваться на основе анализа получаемых результатов . Каждому показателю X и Y присваивается ранг. Ранги значений X расположены в естественном порядке i=1, 2, . . ., n. Ранг Y записывается как Ri и соответствует рангу той пары (X, Y), для которой ранг X равен i. На основе полученных рангов Х i и Yi рассчитываются их разности и вычисляется коэффициент корреляции Спирмена:
Значение коэффициента меняется от −1 (последовательности рангов полностью противоположны) до +1 (последовательности рангов полностью совпадают). Нулевое значение показывает, что признаки независимы.
Подсчитывается количество совпадений и несовпадений знаков отклонений значений показателей от их среднего значения.
C — число пар, у которых знаки отклонений значений от их средних совпадают.
H — число пар, у которых знаки отклонений значений от их средних не совпадают.
— число групп, которые ранжируются.
— число переменных.
— ранг -фактора у -единицы.
Значимость:
, то гипотеза об отсутствии связи отвергается.
В случае наличия связанных рангов:
Рассмотрим случайные величины X и Y c нулевыми средними, и дисперсиями, равными, соответственно, и . Подсчитаем дисперсию случайной величины :
Если предположить, что коэффициент корреляции
то предыдущее выражение перепишется в виде
Поскольку всегда можно выбрать числа a и b так, чтобы (например, если , то берём произвольное a и ), то при этих a и b дисперсия , и значит почти наверное. Но это и означает линейную зависимость между X и Y. Доказательство очевидным образом обобщается на случай величин X и Y с ненулевыми средними, только в вышеприведённых выкладках надо будет X заменить на , и Y — на .
Корреляционный анализ — метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными. Корреляционный анализ тесно связан с регрессионным анализом (также часто встречается термин «корреляционно-регрессионный анализ», который является более общим статистическим понятием), с его помощью определяют необходимость включения тех или иных факторов в уравнение множественной регрессии, а также оценивают полученное уравнение регрессии на соответствие выявленным связям (используя коэффициент детерминации).[1][2]
Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие. В различных прикладных отраслях приняты разные границы интервалов для оценки тесноты и значимости связи.
Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.
Корреляция — взаимосвязь признаков (может быть положительной или отрицательной). Обусловлена сцеплением генов или плейотропией[15]
Tags: Корреляция значение слова, корреляция чисел, корреляция бисериальная, корреляция что это в экономике.